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Abstract—In this paper, we address the problem of semantic
concept learning in the context of image retrieval. We introduce
two types of semantic concepts in our system which are the
image individual concept and scene concept. The individual
concept is usually explicitly provided in the vocabulary of
training concepts, wherein each image could possess multiple
individual concepts. Furthermore, we define the scene concept as
a potential co-occurrence pattern of individual concepts shown
up with high frequency among images. In human learning, it
is common to understand simple ideas prior to shape a more
sophisticated one. However, the co-occurrence pattern usually has
more discriminative power than individual concepts. We present
a novel method for deriving scene concepts by investigating the
hierarchical community structures and closed subgraph in a
weighted concept co-occurrence network (graph). Our study is
activated by the continuing requirement of bridging the semantic
gap in intelligent image retrieval. We present a semantic image
representation called after scene concept signature. The goal is
to assign each image a scene concept signature, which tells the
probabilities for observing certain hidden patterns in an image
and makes it possible to compare and retrieve images based
on a higher level of semantic similarity. We conduct extensive
experiments on publicly available dataset to demonstrate the
effectiveness of our system in semantic concept modeling and
concept based image retrieval.

Index Terms—concept learning, image retrieval, individual
concept, scene concept, co-occurrence network, interactive learn-
ing, long-term learning.

I. INTRODUCTION

THE continuing growth of digital image collections shows
great demand in efficient concept based searching sys-

tems capable of affording satisfying results within an accept-
able retrieval period. The word ”concept” is often used in these
systems [1] [2] [3] [4] to define the semantic meaning emerged
from an image, such as the sets of object names(e.g. food,
furniture), events (e.g. commencement, Olympic Games), and
implicit knowledge (e.g. drive a car, make dinner). The essence
of an intelligent image retrieval task is the learning process
through which the desired concept resided in human brain
can be grasped accurately and promptly by the system. We
borrow the term from machine learning area [5] and define
the preceding process as ”concept learning”.

In this paper, we address the problem of retrieving images
with concept learning in a combined visual and textual setting.
In this task, the retrieval system is given a small proportion
of images with labeled regions from pre-segmentation as the

training set which is normal in real life, and a large proportion
of unlabeled images as the newly added images. We define the
words in the training label vocabulary as individual concepts,
each database image could possess multiple individual con-
cepts. Due to the compositional property of visual objects [6],
the frequency of observing certain patterns of co-occurred
individual concepts across the entire image set could be high.
We consider the co-occurrence property of individual objects
presented in a nature scene, for example, ”sky”, ”sand” and
”sea” often appear together in a ”beach” scene, and define
the co-occurrence pattern as scene concept. In this work we
propose to take into account the co-occurred dependencies
and learn the scene concepts explicitly for the purpose of
semantic search. The scene concept functions as a higher
level of abstraction of the expressed meaning of an image,
which is more concise and discriminative than individual
concept. Therefore it has great importance to recognize the
discriminative scene concepts for image similarity comparison.

Given a vocabulary with N unique individual concepts, the
number of scene concept candidates is significant (e.g. 2N ,
consider each individual concept could either be included or
excluded from a scene concept). We propose to construct
a concept co-occurrence network which captures all the co-
occurred relations of the appeared labels. The nodes in the
network represent the individual concepts and the edges rep-
resent the co-occurrences between concepts. The frequency
of every pair-wise co-occurrence is accumulated across the
entire dataset and recorded as the edge weight. A common
property which was found in many real life networks is called
the property of community structure [7] [8]. A community
structure is qualitatively defined as a group of nodes within
which the connections between nodes are denser compared
to the connection of itself to the outside nodes. Furthermore,
the community structure can be presented hierarchically in
the network, by which means there could be subsets of nodes
inside a community which are closely connected in themselves
while loosely connected to each other. The detection of scene
concept in the network transfers to the problem of discovering
community structures and detecting the complete subgraph (or
under loose condition, the closed subgraph) with large sum-
mation of edge weights inside the communities. We introduce
a novel algorithm which is called ”cut-and-merge” to solve
the problem in acceptable time duration. The algorithm is
generally functioned as a mapping procedure from the network
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Fig. 1. An example of the structures derived for scene concept detection. The number in the co-occurrence network (left side) represents the individual
concept, the color of the nodes shows the community property of the network, the weight of the edge shows the degree of co-occurrence between individual
concepts. Part of the generated dendrogram is shown on the right side, the leaf in the structure represents the nodes in the network, the dendrogram shows
the hierarchical structure of the community property, the weight of the connecting line shows the degree of co-occurrence between individual concepts.

into a structured model (called a dendrogram in social science)
by which the scene concepts can be concluded in different
granularities. To give an idea of the co-occurrence network and
the deduced structured model, we illustrate the correspondence
in Figure 1.

The final goal of our work is to retrieve the most relevant
images to a query ranked on their semantic similarity. The
most common approach for comparing similarity of two im-
ages is to calculate the distance in various dimensions of the
image feature representation. We combine the individual con-
cepts and scene concepts possessed by one image as signatures
which are the semantic representation for computing similarity.
The element in the signature is in numeric form indicating the
occurring probability of a concept in an image. Before acquir-
ing the scene concept signature, we rely on an intermediate
process to obtain the individual concept signature by learning
the correlations between image features and training individual
concepts, and further predicting the occurring probabilities to
the new images. This process shares common features with
the tasks such as image classification, image auto-annotation,
and object recognition, where the image visual features are
extracted and analysed, and the aim arrives eventually at
predicting the relevant class names, annotations, or object
categories. To that end, we modified the generative model
in [9], where a relatively better solve of the individual concept
learning was suggested. However, our approach is unique
in two facets: first, we circumvent the class/label prediction
which is theoretically appealing to the image retrieval task,
and second, we do not impose any controls on the size of the
concepts (synonymously, class names/labels in the context of
their work) an image could possess, consequently, additional
useful details about the image could be kept, exploited, and
even be adapted later on. According to the independence
property of individual concepts, the occurring probability of
a scene concept can be directly calculated by the product of
occurring probabilities of individual concepts under detected
scene configuration. The comparison of conventional approach

Fig. 2. Conventional approaches only keep the concepts with significant
occurring probabilities. The proposed approach considers building the indi-
vidual concept and scene concept signatures as semantic representations of the
image. The learned concept signature is further used in the semantic image
search.

and the proposed approach is illustrated in Figure 2.
In accordance with the above setting, we also set up the

distance metrics for measuring the similarity between con-
cept signatures. Since the individual concept signatures could
have differences in the number and name of the remarkable
elements, the Earth Mover’s distance is introduced as an
effective measure allowing for a partial match between two
individual concept signatures. To compare two scene con-
cept signatures, we use the χ2 distance for the purpose of
measuring the similarity between two modalities. We test our
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proposed retrieval model using a public benchmark dataset:
the Scene Understanding dataset [21] (SUN’09), our results
are comparable or better than the state-of-art reported on this
dataset.

The rest of this paper is organized as follows. Relevant pre-
vious work on image retrieval, concept learning, co-occurrence
patterns is discussed in Section II, the components of our
approach (concept co-occurrence network, scene concept de-
tection, etc) are described in Section III. Section IV addresses
the problem of the semantic based image retrieval. Section V.A
describes our experimental setup and the databases included
in the current study. Section V.B evaluates the effect of the
concept signatures on retrieval performance. Finally, Section
VI concludes the paper with a summary of our findings and
future extensions.

II. RELATED WORK

Most existing systems address the problem of image re-
trieval either in a fully visual way (e.g. Content-based image
retrieval systems (CBIR) as FIDS [10], CIRES [11]), or in a
fully textual way (e.g. web image search engines as Google,
Yahoo). The defects of either system are obvious. The CBIR
systems rely on the visual contents which can be derived from
the image itself, however, the extracted content in the form of
color, shape, and texture features are very loosely connected
to the actual meaning of the image and may override the
expected concept under search. In such systems, the potential
intent can only be captured by techniques such as relevance
feedback [12].

In the contrary, the other predominant line of work assigns
the descriptive metadata in the text form (e.g. labels, annota-
tions, keywords, captions) to the digital images either manually
or automatically. The metadata is the most straightforward way
to deliver image concepts in most of the cases. In this setting
image retrieval seems trivial at first sight since the image
contents are mapped into keywords and the retrieval could be
simply implemented by query-based on keyword (QBK). As
manually labeling images is laborious and expensive due to the
large volume of image collections, most of the works are done
by voluntary in cooperation, e.g. image manual annotation
site such as LabelMe [13]. Recently, much research empha-
sis have been put on automatic image labeling/annotation
(e.g. ALIPR [14]). Typically, machine learning techniques
are adopted to analyze the relations between extracted image
pictorial features and the training concept words defined in a
vocabulary and to automatically predict the relevant concepts
to new images without any user interaction. The automated
annotation engines greatly accelerate the process of concept
learning. Nevertheless, it also suffer imperfections for image
retrieval task. First, in these systems the primary goal is to
acquire accurate image labels rather than accurate retrieval
results. In the unsupervised setting, the assigned concepts of
images have no opportunity to be corrected or refined with
the aid of human determination. At the same time, since
the retrieval is solely based on keywords, it is impossible to
perform ranking of the results according to similarity measure.
Therefore, the automatic labeling technique is useful for image

classification, organization and indexing, while it has not
occupied the superiority in the image retrieval task.

To address the difficulty of semantic search, there has been
a research trend on semantic similarity. For example, in the
transfer learning of new concepts [15], the knowledge are
transferred from known concepts which are determined by
hidden semantic links. The linguistic knowledge bases used
in the research include WordNet, Wikipedia, or the World
Wide Web. Further, the relations between visual and semantic
category similarity were investigate in [16] in accordance with
the appearance of semantically organized image database, such
as ImageNet [17]. Similarly, the sematic hierarchy was utilized
for similar image retrieval in [18], although the semantic co-
occurrence was also considered for similarity comparison, the
structure of the proposed hierarchy was not clearly defined
in the paper. Many papers were presented on modeling the
relations of concepts in tree structured models [2] [19] [20]
where the parent-child relation was presented with inherent
include, inheritance property. In their structured models, the
”jaguar” concept is closer to the ”Africa tiger” rather than
”forest” as they overlook the co-occurrence relation intention-
ally. Recently, focuses have been put on the contextual mod-
els [21] [22] which take into account the spatial arrangement
of concepts, it can efficiently exclude unlikely combinations
of concepts with their location information on the image, and
produce a semantically coherent interpretation of a scene, such
that the concept of ”water” on the bottom could suppress
the occurring of a ”car” on the top while favor the ”ship”.
However, the consideration of spatial relationships between
pairs of concepts make it computational expensive.

The attribute-based concept learning has gained popularity
in the object recognition and classification literature. Since
the attributes are shared in different object categories and
one object category could have multiple attributes, the re-
lation between attributes and objects is quite similar to our
individual concept and scene concept relation, In [23] the
Gaussian Mixture Model was integrated with several newly
developed feature descriptors to learn the concepts and they
show the performance of attribute-based image retrieval gives
comparable results to the state-of-art. An method provided
in [24] builds a vocabulary of discriminative attributes which
are understandable to human. And also human annotators are
invented in a interactive loop where they are asked to provide
the attribute name for detected hidden concepts. The co-
occurrence property of local attributes of concepts have been
explicitly considered in [25], the discriminative patterns are
discovered by machine learning techniques such as boosting
and are used to distinguish different concept categories.

The hidden affiliation patterns of nodes were found in
real life networks with many applications such as social
networks, acquaintance networks, collaboration networks, and
the biological networks including the metabolic networks,
epidemiology and ecological webs, the phenomenon was
called the property of community structure to indicate the co-
occurrence relation of nodes. Many algorithms were proposed
to detect the community structures, e.g. in [26] they solve
the problem by using hierarchical clustering, since the edge
weights representing how closely connected of two nodes
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are not clearly defined, they appeal to the number of non-
independent paths between nodes which could be computed
by using polynomial-time ”max-flow” algorithms. And also
in [27] they consider detecting the least central edges which
are the edges most between communities by using Freeman’s
edge betweenness centrality. The challenge of these systems is
that the network edges do not possess the weights intrinsically,
thus additional computing was required in the initial.

III. CONCEPT CO-OCCURRENCE NETWORK AND SCENE
CONCEPT DETECTION

We now describe our concept detection models, starting
with individual concept learning in Section III.A, and extend-
ing to the concept co-occurrence network with scene concept
detection method in Section III.B.

A. Individual concept learning

We use a multiple Bernoulli relevance model to learn the
correlations between training individual concepts and the pre-
segmented image regions. The model assumes a training set of
images in which the specific correspondence between labels
and regions is provided in advance, which is usually publicly
available (e.g. the benchmark datasets as SUN’09, Image-
CLEF’10, Animal with Attributes), one image can have mul-
tiple labels, all the training labels contribute to the vocabulary
each of which represents an individual concept. We extract the
local features of the training image segments which contains
GIST (the orientation histogram of the object boundary in the
segmented region), PHOG (Pyramid of histograms of oriented
gradients), PHOG with oriented edges (which considers the
direction of the salient Canny edges), and Pyramid of self
similarity descriptor (a log-polar histogram of correlations
between central and surrounding pixels). The features are
aggregated into a vector as the pictorial descriptor of the
image.

We propose to model the joint distribution of associating
concepts with the extracted features by a Bernoulli process.
Since we are focusing on the presence or absence instead of
the prominence of each individual concept, and the occurring
probability of each concept is independent of the other ones,
the Bernoulli model is the best choice in this scenario. The
individual concept signature can be viewed as a continuous
valued occurrence vector where each element of the vector
could vary in the range [0,1]. all the elements in the vector are
independent and identically distributed in Bernoulli process.

Let Ũ be the entire concept vocabulary and T be the labeled
training set, we denote each labeled image in T as I , thus I can
be represented as a set of visual regions RI = {r1, r2, . . . , rn}
and the corresponding subset of labeled individual concepts
ICI = {c1, c2, . . . , cm}, the number of the regions are the
number of the concepts are not necessary to be identical, since
one concept can be shared with several regions, while n has
to be greater than m, since each region can only possess
one concept in the SUN’09 dataset. For each component
in ICI , we assume it is generated from certain multiple-
Bernoulli distribution PrBernoulli(ICi|ri). And for each ri
we have its pictorial feature vector vri , we assume the feature

Fig. 3. The new image with detected salient regions, the pictorial features
are extracted and used for the probability inference of individual concepts
occurrence, the probabilities are built into the individual concept signature.

vector satisfies certain underlying multi-variate distribution
Prmulti−variate(vri |ri). Now we are going to model the
joint probability of any n feature vectors of n regions in
arbitrary image Ia denoted as ṼIan

= {v1, v2, . . . , vn}, and
any subset of the vocabulary with m concepts denoted as
ICIam

. We assume that the probability of observing ṼIan
and

ICIam
denoted as Pr(ṼIan

, ICIam
) should be generated in

the same process as some subset of regions and concepts in the
training set. We estimate the joint probability by calculating
the expectation over all the regions in the training set. It is in
the form as below:

Pr(ṼIan
, ICIam

) =
∑
ri∈RT

{
PrT (ri)

n∏
a=1

Prmulti−variate(va|ri)

×
∏

c∈ICIam

PrBernoulli(c|ri)
∏

c/∈ICIam

(1− PrBernoulli(c|ri))

(1)

The reason we model the joint probability is that if we have a
set of pictorial features in image I , the occurring probability
of each concept can be solved by:

Pr(c) =
Pr(ṼI , ICI)

Pr(ṼI)
(2)

The probability PrT (ri) in Eqs.(1) is the probability of pick-
ing region ri from training set T , which can be simply solved
by PrT (ri) = 1

RT
, where RT is the number of regions in T .

The other two probabilities are estimated as follows: first, the
distribution Prmulti−variate is estimated by non-parametric
kernel-based density estimation, we use the Gaussian kernel in
the process. Second, the distribution PrBernoulli is estimated
by Bayes estimation with a beta prior (the reason is beta prior
is known as the conjugate to the Bernoulli).

For each newly added image, we compute their region
features and map to occurring probabilities of the individual
concepts. The probabilities are then combined into the indi-
vidual concept signature of the image. The process is further
illustrated in Figure 3.

B. Concept co-occurrence network

The original data in SUN’09 dataset is in XML format.
We export all the individual concepts in the training set, and
we rank them based on the frequency of occurrence. Due to
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the large amount data, the number of the individual concepts
have appeared is significant (5,847 in total), we threshold and
only keep the concepts with high occurring frequency. The
group of concepts possessed by each training image is called
a candidate tuple which shows the co-occurrence relationship
among those concepts. We proposed the following algorithm
to accumulate all the candidate tuples into a co-occurrence
network.

Algorithm 1: Co-occurrence network generation

1. Initial a N × N adjacency matrix A with empty cells,
where N is the number of the individual concepts.

2. Initial a individual concept array D which is indexes in
the decreasing order of the occurring frequency. Set all the
values into 0.

3. For each candidate tuple t , get each of the concept name
and index, if index is equal to 0, associate a new node with
the concept in the network, set the value of D[index] into 1,
for each pair of concepts Ci, Cj in the tuple t , plus the value
of A[Ci][Cj ] by 1.

4. Traverse all the elements in A, connect two nodes i, j
with edge weight in the network in accordance with the value
of A[Ci][Cj ].

The generated concept co-occurrence network is shown in
Figure 4.

C. Scene concept detection

In this section we deal with the problem of scene concept
detection based on a given co-occurrence network, the task
is performed by investigating the topological property of the
network, namely the community structure. The co-occurrence
network can be mapped into a tree structured model which
is called a dendrogram to represent the co-occurrence relation
hierarchically. And the low level in the hierarchy with small
granularity of the community is considered as potential scene
concept. To develop an efficient procedure in an algorithm for
the identification of the hierarchical community structure is a
matter of great concern for us. While the process is non-trivial.

There are two categories of community detection methods
in the literature: the agglomerative method and the divisive
method distinguished by the order they construct the dendro-
gram. The former generates a community by iteratively adding
edges between pairs of nodes in order of decreasing weight.
In this way the nodes are first grouped into small communities
and then agglomerate into larger ones. The dendrogram is
built up bottom-up respectively. The latter category of method
deal with the problem in different direction. Given the entire
network with all the connecting edges, the network is divided
into small disconnected parts progressively by cutting the edge
between them, and the disconnected subnetwork is identified
as community. The challenge part is the selection of the edges
to be cut. A concept of ”edge betweenness” is introduced
in [27] to measure the degree of closeness between pairs of
nodes. The betweenness of an edge is defined as the number
of shortest path between any two nodes in the network running

Fig. 4. Top: A macroscopic view of the generated co-occurrence network
in a three-dimensional space, The nodes are labeled with the corresponding
concepts, the edges are colored and weighted based on the frequencies of
co-occurrence. Down: A detailed view inside the network, it can be observed
clearly that a hidden pattern of co-occurrence is marked with heavy red lines.
We propose to detect all the co-occurrence patterns in the network.

through that edge. Clearly, if an edge is connecting two
communities, the betweenness of it should be high, since the
nodes in one community have to cross that edge to reach the
nodes in the other community. However, the edge betweenness
is computationally expensive, evaluating the scores for all the
edges in one iteration needs a time in the order of E × N ,
where E is the number of edges in the network and N is the
number of nodes. In our situation, N is moderately large (N
varies from 100 to 500), and E is in quadratic to N , thus in the
worst case if all the edges have to be dropped and each node
itself represents a community, the scale of the computation is
O(E2N ) which equals to O(N3).

To deal with the problem, we present the ”cut-and-merge”
algorithm which first cut the network into large communities
with acceptable time and then detect the small communities
inside a large one as scene concept patterns by merging the
nodes with large co-occurrence frequencies. The effectiveness
of the detected scene concept is measured by quantitative
definitions. Here we first give the definition of an effective
community and an effective scene concept. Suppose we ob-
tained a subnetwork of community by cutting from the co-
occurrence network and node a is inside the subnetwork.
In the N × N adjacency matrix A, the connected nodes to
a can be categorized into two parts which are within the
subnetwork and outside the subnetwork. We define the sum
of weights in the adjacency matrix A of each category as
inward edge connectivity Din

a and outward edge connectivity
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Dout
a . A subgraph S is an effective community if for all the

nodes in S, we have∑
i∈S

Din
i >

∑
i∈S

Dout
i (3)

And, likewise, a co-occurrence pattern P in S is an effective
scene concept if for all the nodes P , we have∑

j∈P
Din
j >

∑
j∈S

Dout
j (4)

The algorithm for detecting the scene concept is given as
follows.

Algorithm 2: Scene concept detection

Define the maximum granularity of an effective community
as %max, define the minimum number of individual concept
in an effective scene concept as ρmin.

1. Remove the edges in the co-occurrence network whose
weights do not surpass the thresholding value τ = (0.1%) · |T |
, where |T |is the size of the training set.
2. For all the remaining edges in the co-occurrence network,

calculate the betweenness and remove the edges with large
betweenness values.

3. If the removing does not generate any subnetwork S,
continue doing step 2.

4. If the removing generates some subnetworks, verify
their effectiveness by the above quantitative definition. If any
effective subnetwork exists, and its granularity is smaller than
%max, draw the corresponding part in the dendrogram, put
the effective subnetwork Se into the community set CS,
otherwise, repeat step 2.

5. If any ineffective subnetwork exists, repeat step 2.
6. For each the candidate community Se in the set CS

with granularity less than %max, merge the nodes in the
order of increasing edge weights, if a complete subgraph
P (or under loose condition, a closed subgraph) is formed
with size larger than ρmin, verify its effectiveness based on
the above quantitative definition, if P is effective, draw the
corresponding part in the dendrogram, and put it into the scene
concept configuration set P̃ , otherwise, repeat step 6.

7. Output the effective scene concept set P̃ .

The above algorithm avoids the extensive calculation of edge
betweenness, while still maintains the effectiveness of the
detected community and scene concept. We have measured
the speed and effectiveness of our algorithm on both the
practical network and randomly generated network by
computer program compared to the traditional agglomerative
and divisive methods.

D. Scene concept signature

After we have the individual concept signature of each
database image, and the co-occurrence patterns indicated in
the scene concept configuration set P̃ , we can calculate the
scene concept signature easily by multiplying the occurring
probabilities in the individual concept signature based on each
scene concept configuration. The reason we can do it simply

in this way is that the occurring of individual concept is
independent to each other, thus,

Pr(Pe)
PeinP̃

=
∏

i=1···n
Pr(ci) (5)

where Pe = {c1, c2, · · · , cn}. We combine all the scores of
all scene concept occurrences into a vector for each database
image defined as the scene concept signature of it.

IV. SEMANTIC BASED IMAGE RETRIEVAL

We present the proposed distance functions for similarity
measure of semantic image search and retrieval in this section.
First, let the individual scene concept formed in each image
be represented as ICsignature = (cI1, e

I
1), · · · , (cIm, eIm),

where m is the number of individual concepts, cIi denotes
the individual concept, and eIi denotes the supporting score
of occurrence. Earth Mover’s Distance (EMD) is evaluated
as suitable measure of two image signatures given the pre-
defined ground distance between each pair of signature el-
ements. In our setting, the ground distance can be easily
obtained by reversing the edge weights between concepts in
the co-occurrence network, we use d(cIi , c

I
j ) to denote the

ground distance of two individual concepts i and j. For two
images A and B, the Earth Mover’s Distance between their
signatures ICA = (cIA1

, eIA1
), · · · , (cIAm

, eIAm
) and ICA =

(cIB1
, eIB1

), · · · , (cIBm
, eIBm

) is defined as:

DEMD(ICA, ICB) =

∑m
i=1

∑n
j=1 fijd(c

I
Ai
, cIBj

)∑m
i=1

∑n
j=1 fij

(6)

where fij is called a flow that is transferred from one signature
to the other. The EMD is computed by first solving all the fij
by linear programming. The problem is further defined as:

fij = arg
min

m∑
i=1

n∑
j=1

fijdij (7)

subject to the following constraints:

fij ≥ 01 ≤ i ≤ m, 1 ≤ j ≤ n
n∑
j=1

fij ≤ eAi
, 1 ≤ i ≤ m

m∑
i=1

fij ≤ eBj
, 1 ≤ j ≤ n

m∑
i=1

n∑
j=1

fij = min(

m∑
i=1

eAi
,

n∑
j=1

eBj
)

(8)

The EMD can be viewed as a measure of the least amount of
work needed to transfer one signature into the other, a unit of
work in the process is evaluated by the ground distance.

Two scene concept signatures SCA = cSA1
, · · · , cSAm

and
SCB = cSB1

, · · · , cSBm
are compared based on χ2 distance

measure,

Dχ2(SCA, SCB) =
1

2

m∑
i=1

[
(cSAi

− cSBi
)2

cSAi
+ cSBi

] (9)
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where only the pair-wise distances on the same scene concepts
are considered, the reason is that there could not be any co-
occurrence or other relations between different scene concept
pairs.

Further, the distance between query image Q and database
image D considering both the individual and scene concept
signature, is defined in a weighted manner:

Dist(Q,D) = ωDEMD(Q,D)+ (1−ω)Dχ2(Q,D) (10)

The weight ω can be adjusted through the retrieval iterations
based on the retrieval precision determined from relevance
feedback. The updating of the weight is given by:

ωnew = ωold(1+Precisionpre+Precisioncurrent) (11)

Therefore, if the precision is increasing, which means the
scene concept contributes more in the retrieval, we put more
weight on the χ2 distance.

V. EXPERIMENTAL EVALUATION

A. Experimental setup and dataset

For our experimental evaluation, we use the SUN’09 dataset
which is suitable for scene concept learning for the reason
that each image could contain multiple co-occurred concepts
compared to other popular datasets, such as PASCAL 07.
The original dataset includes 12,000 labeled images spreading
over 200 object categories and covering a large scope of
individual concepts (more than 6,000). The images are pre-
segmented into salient regions each of which contains a certain
concept. The labels are given by human annotator in the
on-line annotation system LabelMe, and the consistency of
labeling has been verified to be acceptable. The scene concepts
are learned with randomly dividing the dataset into training
set with a third of the images and the newly added image set
taking the rest. We conduct the dividing for 10 times, and the
retrieval performance is averaged over different divisions of
the dataset.

B. Retrieval performance evaluation

We simulate the human retrieval process by letting the
system automatically determine whether the retrieved images
is in the same concept as the query. The ground truth labels
is used for the determination. It does not override the pro-
posed concept learning approach because the ground truth is
only used for evaluating the performance. Thus the proposed
method can still work on other unseen databases. To simulate
the practice situation of retrieval, each image from the 200
object categories is used as the query, and the performance
is evaluated after five iterations of each query. We use the
average precision metric for performance measure. And we
compare the retrieval performance of our system with the
baseline method which only considers the pictorial feature
distance (GIST, PHOG, etc), the individual concept based
model where the individual concept signature is added. The
interface for image retrieval is shown in Figure 5. The results
averaged on image categories is provided in Table 1.

There is a clear advantage in incorporating both the in-
dividual concept signature and scene concept signature in

Fig. 5. The proposed image retrieval system based on concept signature
similarity. The red mark shows the correctly retrieved relevant images, and
the performance is evaluated based on the rank of the relevant images, the
initial weight ω is set to 0.45, the retrieval is conducted automatically by the
system based on the ground truth labels.

Category Baseline Individual Scene
car 32.71 35.84 36.65
people 29.63 30.11 32.54
wall 19.13 20.78 21.01
tree 54.32 54.17 52.10
building 30.94 32.86 35.77
grass 40.26 41.83 42.96
mountain 28.73 29.68 31.14
sea water 52.66 53.37 59.62
plants 24.45 26.75 28.82
bicycle 11.16 13.32 13.54
book 10.09 11.06 10.59
sofa 15.32 16.55 15.67

TABLE I
THE AVERAGE PRECISION STACKED OVER THE IMAGE CATEGORIES.

the similarity comparison in most of the image categories,
although the improvement is not huge. We found that the scene
concept signature performs outstanding when the concept can
not be distinguishedly described by the pictorial features or
the concept varies in shape, color or other dimensions of the
feature vector in different images, while the concept has close
co-occurring relation to other concepts which can be easily
told by the visual feature.

C. Scene concept detection evaluation

Figure 6. shows the a sub-tree of the learned dendrogram
structure relating to 15 concepts. The sub-tree is correlated
to a potential community structure in the entire co-occurrence
network and is built up in the ”cut” phase. The four scene
concept configuration is learned next. Since the setup of the
controlling parameters: the maximum granularity %max of
an effective community, and ρmin the minimum number of
individual concept in an effective scene concept has the great
infulence on the generated structure and the detected scene
concepts. We also study the retrieval performance with respect
to different parameter setups. The retrieval performance on the
”people” category is shown in Figure 7. From the figure we
observe that when the %max is around the range 25-30 and the
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Fig. 6. Top: a sub-part of the generated dendrogram related to 15 concepts.
Down: detected community structure and relevant scene concept configura-
tions, the differnt color of edges shows the differnet scene concept.

Fig. 7. The relation between the retrieval performance and the controlling
parameters %max and ρmin.

ρmin equal to 4, we can have the best retrieval precision due
to a good compromise between the discriminating probability
and not overfitting the scene configuration.

VI. DISCUSSION

We have introduced a model for individual concept learning
and scene concept detection based on concept co-occurrence
network. We provide the framework for semantic based image
retrieval in accordance with the image semantic signatures. We
have tested our retrieval system on practical dataset where the
results are comparable or better than the state-of-art reported
on this dataset. In the future, we may address the problem
of learning the concepts in a long-term interactive scenario
where users are requested to provide feedbacks of both visual
and textual relevance from the retrieved images. As such, the
system has the adaptability to concept transition in a dynamic
environment, and also the learned individual and scene concept
signatures can be adjusted to further capture the true concepts
underlaid in the search.
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